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Tomáš Gonda

with Sebastian Stengele, Tobias Reinhart, Gemma De les Coves

29 June 2023

https://delescovesgroup.com/


References

[De16] G. De las Cuevas and T. S. Cubitt,
Simple universal models capture all classical spin physics.
Science 351:1180-1183 (2016).

[La69] F. W. Lawvere,
Diagonal arguments and cartesian closed categories.
Lecture Notes in Mathematics 92:134-145 (1969).

[Pa18] D. Pavlovic and M. Yahia,
Monoidal computer III: A coalgebraic view of computability and complexity.
International Workshop on Coalgebraic Methods in Computer Science 167-189
(2018).

[Fr22] T. Fritz, F. Gadducci, D. Trotta, and A. Corradini,
Lax completeness for gs-monoidal categories.
arXiv:2205.06892 (2022).

https://www.science.org/doi/10.1126/science.aab3326
https://www.emis.de/journals/TAC/reprints/articles/15/tr15.pdf
https://arxiv.org/abs/1704.04882
https://arxiv.org/abs/2205.06892v2


Motivation



Motivating examples

Primary:

▷ universal Turing machines

▷ universal spin models [De16]

Others:

▷ NP-completeness

▷ dense subsets

▷ universal approximation by neural networks

▷ generating sets (universal gate set, . . . )

▷ universal graphs

▷ xenobots and chemputers

▷ universal explanations (emergent properties) and universals in
metaphysics



Goals of the framework

▷ Unified language

▷ Examples of universality

▷ Knowledge-organization

▷ General theory of universality

▷ trivial vs. non-trivial universality
▷ necessary conditions for universality
▷ Fixed-point theorem + relation to undecidability



Universal Turing machine



Spin system

▷ Spin d.o.f. Σ for each vertex

▷ A hypergraph, edges ∼ local interactions

▷ Hamiltonian ΣV → R as a sum of local coupling terms

2D Ising spin model with fields has Σ = Z2 and interaction lattice:



Spin system simulation

Every spin system can be simulated on a 2D Ising one [De16].



The set-up (simulators)



Ambient category

A is gs-monoidal, an SMC with A → A⊗ A and A → I such that

= =

= =

Key examples: Rel, Set, Relpoly, Comp(N), Poly(N)



Deterministic

functional morphism: total morphism:

f f
=

f

B B B B

A A

f =

A A

Functional + total = deterministic



Domain

Definition ([Fr22])

The domain of f : A → X is

f

A

A

:=dom(f )

A

A

Definition

f agrees with g on the domain of g , denoted f ⊒ g , if

g

X

A

= g

X

A

f



Target–context category

Definition

A target–context category (A,T ,C ,⋗) is a gs-monoidal
category A with distinguished objects T and C , and preorders ⋗
on every A(A,T ⊗ C ), such that:

▷ f ⊒ f

▷ f ⊒ g =⇒ f ⋗ g

▷ f ⋗ g =⇒ f ◦ h ⋗ g ◦ h
for all f , g : A → T ⊗ C and h : Z → A.

A ambient cat. Comp(N) Relpoly

A object Nn for n ∈ N “sized” sets

f morphism computable fun. bounded relations

T targets Turing machines spin systems

C contexts input strings spin configurations

⋗ ambient rel. computation energy condition



A simulator

sT sC

T C

P C

P ∈ A programs

sT : P → T compiler

sC : P ⊗ C → C context reduction

Example (trivial simulator)

sT = sC =

Example (singleton simulator for TM)

sT
u

= sC = ⟨ , ⟩



Universality



Reductions and universality

Definition

A lax reduction r∗ : s → s ′ from simulator s to s ′ is a functional
r : P ′ → P such that

⋗ s ′

T C

P ′ C

T C

s

P ′ C

r

Definition

Simulator s is universal if there is a lax reduction s → id to the
trivial simulator.



Examples (universal simulators)

▷ Trivial simulator

▷ Singleton simulator for a universal TM

▷ 2D Ising spin model with fields

▷ NP-complete language

▷ Dense subset (e.g. T = R× R+, P = Q× R+)

▷ A generating set (T = tuples, C = formulas)

▷ Weak limit (T = cones, ⋗ = cone factorization, P = C = I )

▷ Cofinal subset P of a poset (T ,⋗).



No-go theorem

sT sC

T C

P C

T spin systems

sT : P ↪→ T 2D Ising

sC : P ⊗ C → C config. embedding

Theorem

For a “suitably ⋗-monotone” function φ : T → R, we have

s ⋗ idT⊗C =⇒ supφ
(
im(sT )

)
≥ supφ(T ).

For spin systems, φ = |spec| works, and RHS is ∞, so

a universal spin model cannot be finite.



Relation to undecidability



Intrinsic behavior structure



Intrinsic behavior structure

T targets TMs spin systems

C contexts inputs spin configurations

B behaviors outputs energies + . . .

⋗B preorder = . . .

eval T ⊗ C → B evaluation measurement

f ⋗ g :

eval

f

eval

g

a a

⋗B

B B

T C T C

for all a ∈ Adet(I ,A), such that RHS is defined.



Unreachability from universality

F : P⊗C → B is a complete parametrization (CP) if for every f

pf

⋗B

C

B

f

C

B

∃ pf ∈ Adet(I ,P) :
F

A simulator s has unreachability if eval ◦ s is not a CP.

Theorem (Fixed Point Theorem à la [La69])

If F : C × C → B is a CP, then every g : B → B has a (quasi)
fixed point.

Lemma

If eval is a CP and s is universal, then eval ◦ s is a CP.

universal s + fixed-point-free g =⇒ unreachability of id



Unreachability from universality



Hierarchy of universal simulators



Simulator morphisms

7→

q

s

T C

P C

T C

s

P ′ C

r

= s ′

T C

P ′ C

r is deterministic ensures sequential composition

We also require that (s ′ is universal) =⇒ (s is universal).



Processings

q

C

⋗

T C

TC

T C

T PP

q

C

T C

TP

=

P T C

qCqT

CT



Parsimony of simulators

Definition

s ′ is a more parsimonious simulator than s, written s ′ ≥ s, if
there exists a morphism s → s ′.

Theorem

The singleton simulator su for a universal TM is strictly more
parsimonious than the trivial simulator.

▷ su ≥ id constructs right-inverse to the reduction.

▷ su ̸≤ id because ∃ t, t ′ : I → T such that

▷ t cannot simulate t ′ and

▷ they both compile to u ∈ T



Summary

▷ Abstract notion of universality with several instances

▷ Necessary conditions for universality

▷ Morphisms of simulators → non-trivial universality

▷ Fixed Point Theorem and unreachability

▷ target–context functors & simulator categories
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