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Motivating examples

Primary:
> universal Turing machines

> universal spin models [Del6]

Others:

> NP-completeness
dense subsets
universal approximation by neural networks
generating sets (universal gate set, ...)
universal graphs

xenobots and chemputers
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universal explanations (emergent properties) and universals in
metaphysics



Goals of the framework

> Unified language
> Examples of universality

> Knowledge-organization

> General theory of universality
> trivial vs. non-trivial universality
> necessary conditions for universality
> Fixed-point theorem + relation to undecidability



Universal Turing machine
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Spin system

> Spin d.o.f. X for each vertex
> A hypergraph, edges ~ local interactions
> Hamiltonian £V — R as a sum of local coupling terms

2D Ising spin model with fields has ¥ = Z, and interaction lattice:

L L. T

T‘—*TS“—('QW H’Z G 0 0 +Z A
o o ! ‘



Spin system simulation

Every spin system can be simulated on a 2D Ising one [Del6].
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The set-up (simulators)



Ambient category

A is gs-monoidal, an SMC with A -+ A® A and A — [ such that

/

Q

Key examples: Rel, Set, Rel,o1y, Comp(N), Poly(N)



Deterministic

functional morphism: total morphism:

{5 0 - ]
A A

Functional + total = deterministic



Domain

Definition ([Fr22])
The domainof f: A — X is

Definition
f agrees with g on the domain of g, denoted f O g, if



Target—context category
Definition
A target—context category (A, T, C, >) is a gs-monoidal

category A with distinguished objects T and C, and preorders >
on every A(A, T ® C), such that:

> f3f

>flg = f>g

>f>g = foh>goh
forall f,g: A— T®C and h: Z — A.

A ambient cat. Comp(N) Relpoly

A object N"” forne N “sized” sets

f morphism computable fun. bounded relations
T targets Turing machines spin systems

C contexts input strings spin configurations
> ambient rel. computation energy condition



A simulator
C
PeA programs

T
st:P—>T compiler
P C

sc: P® C — C context reduction

Example (trivial simulator)

Example (singleton simulator for TM)
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Reductions and universality

Definition
A lax reduction r*: s — s’ from simulator s to s’ is a functional
r: P' — P such that

Definition
Simulator s is universal if there is a lax reduction s — id to the
trivial simulator.



Examples (universal simulators)

> Trivial simulator

v

Singleton simulator for a universal TM

v

2D Ising spin model with fields

v

NP-complete language

v

Dense subset (e.g. T=R xRy, P=Q xRy})
> A generating set (T = tuples, C = formulas)
> Weak limit (T = cones, > = cone factorization, P = C = /)

> Cofinal subset P of a poset (T, >).



No-go theorem

r ¢ T spin systems
st P T 2D Ising

sc: P® C— C config. embedding
P C

Theorem
For a “suitably >-monotone” function p: T — R, we have

s>idrgec = sup@(im(ST)) > supp(T).

For spin systems, ¢ = |spec| works, and RHS is oo, so

a universal spin model cannot be finite.



Relation to undecidability



Intrinsic behavior structure




Intrinsic behavior structure

T targets TMs spin systems
C contexts inputs spin configurations
B behaviors outputs energies + . ..
>g preorder =
eval TC—B evaluation measurement

f>g:

for all a € Aqet(/, A), such that RHS is defined.



Unreachability from universality

F: P® C — B is a complete parametrization (CP) if for every f
B

dpr € Aget(/, P) : >B
a C C

A simulator s has unreachability if eval o s is not a CP.

Theorem (Fixed Point Theorem a la [La69])

If F: Cx C— Bisa CP, then every g: B — B has a (quasi)
fixed point.

Lemma

If eval is a CP and s is universal, then eval o s is a CP.

universal s + fixed-point-free g = unreachability of id



Unreachability from universality

Morphisms f: C - B




Hierarchy of universal simulators



Simulator morphisms

T C T C
(5] = = s
P C P C

r is deterministic ensures sequential composition

We also require that (s is universal) = (s is universal).



Processings

T C T C
)
pT C P T C



Parsimony of simulators

Definition
s’ is a more parsimonious simulator than s, written s’ > s, if
there exists a morphism s — s’

Theorem
The singleton simulator s, for a universal TM is strictly more
parsimonious than the trivial simulator.

> s, > id constructs right-inverse to the reduction.

> s, £ id because 3t,t': | — T such that

> t cannot simulate t' and
> they both compileto ue T



Summary

> Abstract notion of universality with several instances

v

Necessary conditions for universality

v

Morphisms of simulators — non-trivial universality
> Fixed Point Theorem and unreachability

> target—context functors & simulator categories
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